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We calculate rigorous lower bounds for the ground-state degeneracy per site, W, of the q-state Potts anti-
ferromagnet on slabs of the simple cubic lattice that are infinite in two directions and finite in the third and that
thus interpolate between the square �sq� and simple cubic �sc� lattices. We give a comparison with large-q
series expansions for the sq and sc lattices and also present numerical comparisons.
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I. INTRODUCTION

Nonzero ground-state entropy �per lattice site�, S0�0, is
an important subject in statistical mechanics, as an exception
to the third law of thermodynamics and a phenomenon in-
volving large disorder even at zero temperature. Since S0
=kB ln W, where W=limn→� Wtot.

1/n and n denotes the number
of lattice sites, S0�0 is equivalent to W�1, i.e., a total
ground-state degeneracy Wtot. that grows exponentially rap-
idly as a function of n. One physical example is provided by
H2O ice, for which the residual entropy per site �at 1 atm.
pressure� is measured to be S0= �0.41�0.03�kB, or equiva-
lently, W=1.51�0.05 �1–3�. A salient property of ice is that
the ground-state entropy occurs without frustration; i.e., each
of the ground-state configurations of the hydrogen atoms on
the bonds between oxygen atoms minimizes the internal en-
ergy of the crystal �4�.

A model that also exhibits ground-state entropy without
frustration and hence provides a useful framework in which
to study the properties of this phenomenon is the q-state
Potts antiferromagnet �5–7� on a given lattice � or, more
generally, a graph G, for sufficiently large q. Consider a
graph G= �V ,E�, defined by its vertex �site� and edge �bond�
sets V and E. Denote the cardinalities of these sets as n�G�
= �V��n and e�G�= �E�, and let �G�� limn�G�→� G. An impor-
tant connection with graph theory is the fact that the zero-
temperature partition function of the q-state Potts antiferro-
magnet on the graph G satisfies Z�G ,q ,T=0�= P�G ,q�,
where P�G ,q� is the chromatic polynomial expressing the
number of ways of coloring the vertices of G with q colors
such that no two adjacent vertices have the same color
�called a proper q-coloring of G� �8,9�. Thus,

W��G�,q� = lim
n→�

P�G,q�1/n. �1.1�

In general, for certain special values of q, denoted qs, one has
the following noncommutativity of limits �10�:

lim
n→�

lim
q→qs

P�G,q�1/n � lim
q→qs

lim
n→�

P�G,q�1/n, �1.2�

and hence it is necessary to specify the order of limits that
one takes in defining W��G� ,q�. Here by W��G� ,q� we mean

the function obtained by setting q to the given value first and
then taking n→�. For the n→� limit of a bipartite graph
Gbip., an elementary lower bound is W��Gbip.� ,q��	q−1
so that for q�2, the Potts antiferromagnet has a nonzero
ground-state entropy on such a lattice. A better lower bound
for the square �sq� lattice is W�sq,q�� �q2−3q+3� / �q−1�
�11�. In previous work �12–15� one of us and Tsai derived
lower and upper bounds on W for a variety of different two-
dimensional lattices. It was found that these lower bounds
are quite close to the actual values as determined with rea-
sonably good accuracy from large-q series expansions and/or
Monte Carlo measurements.

In the present paper we generalize these lower bounds on
two-dimensional lattice graphs by deriving lower bounds on
W��G� ,q� for sections of a three-dimensional lattice, namely,
the simple cubic �sc� lattice, which are of infinite extent in
two directions �taken to lie along the x and y axes� and finite
in the third direction, z. By comparison with large-q expan-
sions and numerical evaluations, we show how the lower
bounds for the W functions for these slabs interpolate be-
tween the values for the �respective thermodynamic limits of
the� square and simple cubic lattices. These bounds are of
interest partly because one does not know the exact functions
W�sq,q� or W�sc,q� for general q.

II. CALCULATIONAL METHOD

Let us consider a section �slab� of the simple cubic lattice
of dimensions Lx�Ly �Lz vertices, which we denote
sc��Lx�BCx� �Ly�BCy � �Lz�BCz�, where the boundary condi-
tions �BCs� in each direction are indicated by the subscripts.
The chromatic polynomial of this lattice will be denoted
P�sc��Lx�BCx� �Ly�BCy � �Lz�BCy� ,q�. We will calculate lower
bounds for W�sc��Lx�BCx� �Ly�BCy � �Lz�BCz� ,q� in the limit
Lx→� and Ly→� with Lz fixed. These are independent of
the boundary conditions imposed in the directions in which
the slab is of infinite extent, and hence, for brevity of nota-
tion, we will denote the limit limLx,Ly→� sc��Lx�BCx

� �Ly�BCy � �Lz�BCz� simply as S�Lz�BCz
, where S stands for

“slab.” We will consider both free �F� and periodic �P�
boundary conditions in the z direction, and thus slabs such as
S3F

and S3P
. For technical reasons �to get an expression in-

volving a trace of a coloring matrix, as explained below� we
will use periodic boundary conditions in the x direction. Note
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that the proper q-coloring constraint implies that FBCz and
PBCz are equivalent if Lz=2. The number of vertices for G
=sc��Lx�BCx� �Ly�BCy � �Lz�BCz� is n=LxLyLz. The specific
form of Eq. �1.1� for our calculation is

W�S�Lz�BCz
,q� = lim

Ly→�
lim

Lx→�
�P�sc��Lx�P � �Ly�BCy

� �Lz�BCz�,q��1/n. �2.1�

To derive a lower bound on W�S�Lz�BCz
,q�, we generalize the

method of Refs. �11–14� from two to three dimensions. We
consider two adjacent transverse slices of the slab orthogonal
to the x direction, with x values x0 and x0+1. These are thus
sections of the square lattice of dimension Ly �Lz, which we
denote Gx0

=sq��Ly�BCy
� �Lz�BCz

�x0
and Gx0+1=sq��Ly�BCy

� �Lz�BCz
�x0+1. We label a particular color assignment to the

vertices of Gx0
that is a proper q-coloring of these vertices as

C�Gx0
� and similarly for Gx0+1. The total number of proper

q-colorings of Gx0
is

N = P�Gx0
,q� = P�Gx0+1,q� . �2.2�

Now let us add the edges in the x direction that join these
two adjacent transverse slices of the slab together. Among
the N2 color configurations that yield proper q-colorings of
these two separate yz transverse slices, some will continue to
be proper q-colorings after we add these edges that join them
in the x direction, while others will not. We define an N
�N-dimensional coloring compatibility matrix T with en-
tries TC�Gx0

�,C�Gx0+1� equal to �i� 1 if the color assignments

C�Gx0
� and C�Gx0+1� are proper q-colorings after the edges in

the x direction have been added joining Gx0
and Gx0+1, i.e., if

the color assigned to each vertex v�x0 ,y ,z� in Gx0
is different

from the color assigned to the vertex v�x0+1 ,y ,z� in Gx0+1;
and �ii� 0 if the color assignments C�Gx0

� and C�Gx0+1� are
not proper q-colorings after the edges in the x direction have
been added, i.e., there exists some color assigned to a vertex
v�x0 ,y ,z� in Gx0

that is equal to a color assigned to the vertex
v�x0+1 ,y ,z� in Gx0+1. Clearly, Tij =Tji. The chromatic poly-
nomial for the slab is then given by the trace

P�sc��Lx�P � �Ly�BCy � �Lz�BCz
�,q� = Tr�TLx� . �2.3�

Since T is a real symmetric matrix, there exists an orthogonal
matrix A that diagonalizes T: ATA−1=Tdiag.. Let us denote
the N eigenvalues of T as �T,j, 1	 j	N. Since T is a real
non-negative matrix, we can apply the generalized Perron-
Frobenius theorem �17,18� to infer that T has a real maximal
eigenvalue, which we denote �T,max. It follows that

lim
Lx→�

�P�sc��Lx�P � �Ly�BCy � �Lz�BCz
�,q��1/Lx = �T,max.

�2.4�

Now for the transverse slices Gx0
and Gx0+1, denoted generi-

cally as ts��Lz�BCz
�, the chromatic polynomial has the form

P�Gx0
,q� = P�Gx0+1,q� = 


j

cj��ts��Lz�BCz
�,j�Ly �2.5�

where the cj are coefficients whose precise form is not
needed here, given the range of q�3 for which we apply our
bounds. �This range is used because bounds are unnecessary
for q=2 since W�sc,2�=1 is known exactly.� The set of
�ts��Lz�BCz

�,j’s is independent of the length Ly and although this

set depends on BCy, the maximal one �having the largest
magnitude�, �ts��Lz�BCz

�,max, is independent of BCy �e.g., �16�
and references therein�. Hence,

lim
Ly→�

�P�Gx0
,q��1/Ly � lim

Ly→�
�N�1/Ly = �ts��Lz�BCz

�,max.

�2.6�

The two adjacent slices together with the edges in the x
direction that join them constitute the graph sc�2F� �Ly�BCy
� �Lz�BCz

�. We denote the chromatic polynomial for this sec-
tion �tube� of the sc lattice as P�sc�2F� �Ly�BCy
� �Lz�BCz

� ,q� �which is equal to P�sc�2P� �Ly�BCy

� �Lz�BCz
� ,q� because of the proper q-coloring condition�.

This has the form

P�sc�2F � �Ly�BCy � �Lz�BCz
�,q� = 


j

cj���tube��Lz�BCz
�,j�Ly

�2.7�

where cj� are coefficients analogous to those in Eq. �2.5�.
Therefore,

lim
Ly→�

�P�sc�2F � �Ly�BCy � �Lz�BCz
�,q��1/Ly = �tube��Lz�BCz

�,max.

�2.8�

Now let us denote the column sum

Cj�T� = 

i=1

N

Tij , �2.9�

which is equal to the row sum 
 j=1
N Tij since T is symmetric.

We also define the sum of all entries �SE� of T as

SE�T� = 

i,j=1

N

Tij . �2.10�

Note that SE�T� /N is the average row �=column� sum. Next,
we observe that

SE�T� = P�sc�2F � �Ly�BCy � �Lz�BCz
�,q� . �2.11�

To obtain our lower bound, we then use the r=1 special case
of the theorem that for a non-negative symmetric matrix T
and r�N+ �19�

�T,max � �SE�Tr�
N �1/r

. �2.12�

The lower bound is then

W�S�Lz�BCz
,q� � W�S�Lz�BCz

,q�� �2.13�

where
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W�S�Lz�BCz
,q��

= lim
Ly→�

 SE�T�
N �1/�LyLz�

= lim
Ly→�

�P�sc�2F � �Ly�BCy � �Lz�BCz
�,q�

P�sq��Ly�BCy � �Lz�BCz
�,q� �1/�LyLz�

= ��tube��Lz�BCz
�,max

�ts��Lz�BCz
�,max

�1/Lz

. �2.14�

III. RESULTS FOR SLAB OF THICKNESS Lz=2
WITH FBCz

We now evaluate our general lower bound in Eqs. �2.13�
and �2.14� for a slab of the simple cubic lattice with thick-
ness Lz=2 and FBCz, denoted S2F

. In this case the transverse
slice is the graph sq�2F� �Ly�BCy�. For FBCy, an elementary
calculation yields

P�sq�2F � �Ly�F�,q� = q�q − 1��q2 − 3q + 3�Ly−1 �3.1�

with a single �ts�2F�=�ts�2P���ts�2�, and this is also the maxi-
mal � for PBCy �10,20�, so that

�ts�2�,max = q2 − 3q + 3. �3.2�

We next use the calculation of

P�sc�2F � �Ly�F � 2F�,q� = P�sc�2F � 2F � �Ly�F�,q�

= P�sq�4P � �Ly�F�,q� �3.3�

in Ref. �34� �where each of the 2F BC’s is equivalent to 2P�,
from which we calculate the maximal �tube�2�,max to be

�tube�2�,max =
1

2
�q4 − 8q3 + 29q2 − 55q + 46 + 	R22 �

�3.4�

where

R22 = q8 − 16q7 + 118q6 − 526q5 + 1569q4

− 3250q3 + 4617q2 − 4136q + 1776. �3.5�

We then substitute these results for �ts�2�,max and �tube�2�,max
into the Lz=2 special case of Eq. �2.14� to obtain W�S2 ,q��,
and thus the resultant lower bound on W�S2F

,q�=W�S2P
,q�

�W�S2 ,q�: W�S2 ,q��W�S2 ,q��.

IV. COMPARISON WITH LARGE-q SERIES EXPANSIONS

One way to elucidate how this lower bound W�S2 ,q��

compares with the exact W�sq,q� and W�sc,q� is to compare
the large-q series expansions for these three functions. For
this purpose, it is first appropriate to give some relevant
background on large-q series expansions for W��G� ,q� func-
tions. Since there are qn possible colorings of the vertices
of an n-vertex graph G with q colors if no conditions are
imposed, an obvious upper bound on the number of proper

q colorings of the vertices of G is P�G ,q�	qn. This yields
the corresponding upper bound W��G� ,q�
q. Hence, it is
natural to define a reduced function that has a finite limit as
q→�,

Wr��G�,q� = q−1W��G�,q� . �4.1�

For a lattice or, more generally, a graph whose vertices have
bounded degree, Wr��G� ,q� is analytic about 1 /q=0.
�Wr��G� ,q� is nonanalytic at 1 /q=0 for certain families of
graphs that contain one or more vertices with unbounded
degree as n→�, although the presence of a vertex with un-
bounded degree in this limit does not necessarily imply
nonanalyticity of Wr��G� ,q� at 1 /q=0 �21,22�.� It is conven-
tional to express the large-q Taylor series for a function that
has some factors removed from Wr, since this function yields
a simpler expansion. A chromatic polynomial has the general
form

P�G,q� = 

j=0

n−k�G�

�− 1� jan−jq
n−j , �4.2�

where the an−j �0 and k�G� is the number of connected com-
ponents of G �taken here to be k�G�=1 without loss of gen-
erality�. One has an=1, an−1=e�G�, and, provided that the
girth g�G��3 �23�, as is the case here, an−2= � e�G�

2 �. A
�-regular graph is a graph such that each vertex has degree
�coordination number� �. For a �-regular graph, e�G�
=�n /2. The coefficients of the three terms of highest degree
in q in P�G ,q� for a �-regular graph are precisely the terms
that would result from the expansion of �q�1−q−1��/2�n.
Hence, for a �-regular graph or lattice, one usually displays
the large-q series expansions for the reduced function

W̄��,q� =
W��,q�

q�1 − q−1��/2 . �4.3�

The large-q Taylor series for this function can be written in
the form

W̄��,q� = 1 + 

j=1

�

w�,jy
j , �4.4�

where

y =
1

q − 1
. �4.5�

The two results that we shall need here are the large-q �i.e.,

small-y� Taylor series for W̄�sq,q� and W̄�sc,q�. The large-q

series for W̄�sq,q� was calculated to successively higher or-
ders in �24–28�. Here we only quote the terms to O�y11�,

W̄�sq,q� = 1 + y3 + y7 + 3y8 + 4y9 + 3y10 + 3y11 + O�y12� .

�4.6�

As noted above, lower bounds on W�� ,q� obtained from
inequality Eq. �2.12� for two-dimensional lattices � were
found to be quite close to the actual values of the respective
W�� ,q� for a large range of values of q. This can be under-
stood for large values of q from the fact that they coincide
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with the large-q expansions to many orders, and the agree-
ment actually extends to values of q only moderately above
q=2. For example, the lower bound on W�sq,q� in �11� is

equivalent to W̄�sq,q�� �1+y3�. This agrees with the small-y
series up to order O�y6�, as is evident from comparison with
Eq. �4.6�. This lower bound also agrees quite closely with the
value of W�sq,q� determined by Monte Carlo simulations in
�10,12,13� �see Table I of �10� and Table 1 of �12��. We
include this comparison here in Table I. For our purposes, it
is sufficient to quote the results from Ref. �10� only to three
significant figures. Since we are using large-q series for this
comparison, we list the results in Table I for a set of values
q�4. As another example, the lower bound obtained for the

honeycomb lattice in Ref. �13�, W̄�hc,q�� �1+y5�1/2, agreed

with the small-y series for W̄�hc,q� to O�y10�. Thus, it was
found that for all of the cases studied, W�� ,q�� provides not
only a lower bound on W�� ,q� but a rather good approxi-
mation to the latter function. It is thus reasonable to expect
that this will also be true for the lower bounds W�S�Lz�BCz

,q��

for the slabs SLz
of the simple cubic lattice considered here,

of infinite extent in the x and y directions and of thickness Lz
in the z direction.

From ingredients given in Ref. �25�, we have calculated a

large-q expansion of the W̄�sc,q� for the sc lattice and obtain

W̄�sc,q� = 1 + 3y3 + 22y5 + 31y6 + O�y7� . �4.7�

In Table I we list the corresponding values of W�sc,q� ob-
tained from this large-q series, denoted W�sc,q�ser., for q
�4. We also list estimates of W�sc,q�, denoted W�sc,q�MC,
for 4	q	6 from the Monte Carlo calculations in Ref. �29�.
One sees that the approximate values obtained from the
large-q series are close to the estimates from Monte Carlo
simulations even for q values as low as q=4.

The coordination number for the S2F
slab of the simple

cubic lattice �of infinite extent in the x and y directions� is

��S2F
�=5. We thus analyze the reduced function W̄�S2 ,q��

=W�S2 ,q�� / �q�1−q−1�5/2�. This has the large-q �small-y� ex-
pansion

W̄�S2,q�� = 1 + 2y3 + 2y5 + 9y6 + O�y7� . �4.8�

As this shows, W̄�S2 ,q�� provides an interpolation between

W̄�sq,q� and W̄�sc,q�; for example, the coefficient of the y3

term is 1 for �=sq, 2 for �=S2, and 3 for �=sc. Further-
more, the coefficient of the y5 term is 0 for �=sq, 2 for �
=S2, and 22 for �=sc. This is in agreement with the fact that
the exact functions W�S�Lz�F

,q� interpolate between W�sq,q�
and W�sc,q� as Lz increases from 1 to � �30� and the expec-
tation, as discussed above, that W�S�Lz�F

,q�� should be close
to W�S�Lz�F

,q�.

V. RESULTS FOR SLABS OF THICKNESS
Lz=3 AND 4 WITH FBCz

For the slab of the simple cubic lattice with thickness Lz
=3 and FBCz, denoted S3F

, the transverse slice is the graph
sq�3F� �Ly�BCy�. The chromatic polynomials P�sq�3F
� �Ly�F� ,q�, P�sq�3F� �Ly�P� ,q�, and P�sq�3F��Ly�TP� ,q�
�where TP denotes twisted periodic, i.e., Möbius BC� were
computed for arbitrary Ly in Refs. �31–33�, respectively, and
the maximal � was shown to be the same for all of these
boundary conditions. For the reader’s convenience, we list
this �ts�3F�,max in Eqs. �A2� and �A3� of the Appendix. The
other input that is needed to obtain the lower bound in Eq.
�2.14� is the maximal � for the chromatic polynomial of the
sc�2F�3F�Ly� tube graph, i.e., �tube�3F�,max. The relevant
transfer matrix that determines the chromatic polynomial for
this tube graph was given with Ref. �34�. Because it is 13
�13 dimensional, one cannot solve the corresponding char-
acteristic polynomial analytically to obtain �tube�3F�,max for
general q. However, one can calculate �tube�3F�,max numeri-
cally, and we have done this. Combining these results with
Eqs. �A2� and �A3�, we then evaluate the lower bound
W�S3F

,q�� by evaluating the Lz=3 special case of Eq. �2.14�.
For the slab of the simple cubic lattice with thickness

Lz=4 and FBCz, S4F
, the transverse slice is the graph

sq�4F� �Ly�BCy�. Here the maximal �ts�4F�,max is the solution
of the cubic equation Eq. �A5� given in the Appendix
�31,35�. One also needs the maximal � for the chromatic
polynomial of the sc�2F�4F�Ly� tube graph, i.e.,
�tube�4F�,max. The relevant �136�136 dimensional� transfer

TABLE I. Comparison of lower bounds W�S�Lz�BCz
,q�� for �Lz�BCz=2F=2P ,3F ,4F ,3P with approximate values of W�� ,q� for the sq and

sc lattices �, as determined from large-q series expansions, denoted W�� ,q�ser. and, where available, Monte Carlo simulations, denoted
W�� ,q�MC. We also list W�sq,q�� for reference. See text for further details.

q W�sq,q�MC W�sq,q�ser. W�sq,q�� W�S2F
,q�� W�S3F

,q�� W�S4F
,q�� W�sc,q�ser. W�sc,q�MC W�S3P

,q��

4 2.34 2.34 2.33 2.13 2.07 2.04 2.06 1.9 1.78

5 3.25 3.25 3.25 2.96 2.875 2.83 2.75 2.7 2.62

6 4.20 4.20 4.20 3.87 3.765 3.71 3.58 3.6 3.51

7 5.17 5.17 5.17 4.81 4.69 4.64 4.48 - 4.43

8 6.14 6.14 6.14 5.76 5.64 5.58 5.41 - 5.37

9 7.125 7.125 7.125 6.73 6.605 6.54 6.36 - 6.325

10 8.11 8.11 8.11 7.71 7.58 7.51 7.32 - 7.29

100 - 98.0 98.0 97.5 97.4 97.3 97.0 - 97.0
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matrix for this tube graph was calculated for Ref. �34�, and
we have used this to compute �tube�4F�,max numerically. We
then obtain the lower bound W�S4F

,q�� from the Lz=4 spe-
cial case of Eq. �2.14�. The results for W�S3F

,q�� and
W�S4F

,q�� are listed in Table I.

VI. RESULT FOR SLAB OF THICKNESS Lz=3 WITH PBCz

It is also of interest to obtain a lower bound for W for a
slab with periodic boundary conditions in the z direction,
since these minimize finite-volume effects. For this purpose
we consider the slab of the simple cubic lattice with thick-
ness Lz=3 and PBCz, S3P

. In this case the transverse slice is
the graph sq�3P� �Ly�BCy�. For FBCy the chromatic polyno-
mial involves only one �, and this is also the maximal � for
PBCy and TPBCy �36�, viz.,

�ts�3P�,max = q3 − 6q2 + 14q − 13. �6.1�

One then needs �tube�3P�,max. The relevant �4�4 dimensional�
transfer matrix for this tube graph was calculated for Ref.
�34�, and we have used this to compute �tube�3P�,max numeri-
cally. The results for W�S3P

,q� are given in Table I.

VII. DISCUSSION

Since the slabs of infinite extent in the x and y directions
and of finite thickness Lz geometrically interpolate between
the square and simple cubic lattices, it follows that the re-
sultant W functions for these slabs interpolate between
W�sq,q� and W�sc,q� �30�. Given that it was shown previ-
ously that the lower bounds W�� ,q�� obtained by the color-
ing matrix method are quite close to the actual values of the
respective W�� ,q� for a number of two-dimensional lattices,
this is also expected to be true for the W�S�Lz�BCz

,q�� bounds.

We have shown above how W�S2 ,q�� interpolates between
W�sq,q� and W�sc,q� via a comparison of the large-q series
expansions for these three functions. Table I provides a fur-
ther numerical comparison for W�S3F

,q��, W�S4F
,q��, and

W�S3P
,q�� with W�sq,q� and W�sc,q�, the latter being deter-

mined to reasonably good accuracy from large-q series ex-
pansions and, where available, Monte Carlo measurements.
As noted, the lower end of the range of q values for the
comparison is chosen as q=4 in view of the use of large-q
series.

For sections of lattices, and, more generally, graphs that
are not �-regular, one can define an effective vertex degree
�coordination number� as �14�

�ef f =
2e�G�
n�G�

. �7.1�

For 3	Lz
�, the slab of the simple cubic lattice �of infinite
extent in the x and y directions� with FBCz is not � regular
but has the effective coordination number

�ef f�S�Lz�F
� = 23 −

1

Lz
� . �7.2�

We observe that for the q values considered in Table I,
W�sq,q��W�S2 ,q���W�S3F

,q���W�S4F
,q���W�sc,q�

�37�. The fact that for fixed q, the exact function W�S�Lz�F
,q�

is a nonincreasing function of Lz, and, for q�2, a monotoni-
cally decreasing function of Lz, follows from a theorem
proven in Ref. �30�. To the extent that the lower bounds
W�S�Lz�F

,q�� lie close to the actual values of W�S�Lz�F
,q�, it is

understandable that they also exhibit the same strict mono-
tonicity. As was noted in Ref. �30�, the reason for the mono-
tonicity of the exact values is that the number of proper
q-colorings per vertex of a lattice graph is more highly con-
strained as one increases the effective coordination number
of the lattice section. �This is also evident in Fig. 5 of �10�.�
In the present case, the monotonicity can be seen as a result
of the fact that the effective coordination number increases
monotonically as a function of Lz.

The use of periodic boundary conditions in the z direction
minimizes finite-size effects, so that for a given Lz,
W�S�Lz�P

,q� would be expected to be closer to W�sc,q� than
W�S�Lz�F

,q� �30�. Again, to the extent that the lower bounds
are close to the actual W functions for these respective slabs,
one would expect W�S�Lz�P

,q�� to be closer than W�S�Lz�F
,q��

to W�sc,q�. Our results agree with this expectation. In con-
trast to W�S�Lz�F

,q�, W�S�Lz�P
,q� is not, in general, a nonin-

creasing function of Lz, as was discussed in general in �30�
�see Fig. 1 of Ref. �30� therein�. Thus, values of W�S�Lz�P

,q�,
and hence, a fortiori, W�S�Lz�P

,q��, may actually lie slightly
below those for W�sc,q�, as is evident for the W�S3P

,q��

entries in Table I.

VIII. CONCLUSIONS

In this paper we have calculated rigorous lower bounds
for the ground-state degeneracy per site W, equivalent to the
ground-state entropy S0=kB ln W, of the q-state Potts antifer-
romagnet on slabs of the simple cubic lattice that are infinite
in two directions and finite in the third. Via comparison with
large-q expansions and numerical evaluations, we have
shown how the results interpolate between the sq and sc
lattices.
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APPENDIX

We note the following results on Ed lattices and lattice
sections: W��bip. , 2�=1 for any bipartite lattice; W�sq,3�
= �4 /3�3/2 �38�; and W��L� ,q�=W��C� ,q�=q−1, where
Ln and Cn denote the n-vertex line and circuit graphs.
For the infinite-length square-lattice strip of width 2,
W�sq�2F��� ,q�=W�sq�2P��� ,q�=	q2−3q+3, where, as
in the text, the subscripts F and P denote free and periodic
boundary conditions in the direction in which the strip is
finite. For the infinite-length strip of the square lattice with
�transverse� width 3 and free transverse boundary conditions,
sq�3F��� �31–33�
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W�sq�3F � ��,q� = ��3F,max�1/3 �A1�

where

�3F,max =
1

2
��q − 2��q2 − 3q + 5� + 	R3 � �A2�

with

R3 = �q2 − 5q + 7��q4 − 5q3 + 11q2 − 12q + 8� . �A3�

For the infinite-length strip of the square lattice with width 4
and free transverse boundary conditions, sq�4F��� �31,35�,

W�sq�4F � ��,q� = ��4F,max�1/4 �A4�

where �4F,max is the largest root of the cubic equation

x3 + b4F,1x2 + b4F,2x + b4F,3 = 0 �A5�

with

b4F,1 = − q4 + 7q3 − 23q2 + 41q − 33 �A6�

b4F,2 = 2q6 − 23q5 + 116q4 − 329q3

+ 553q2 − 517q + 207 �A7�

and

b4F,3 = − q8 + 16q7 − 112q6 + 449q5 − 1130q4

+ 1829q3 − 1858q2 + 1084q − 279. �A8�
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